domingo, 2 de septiembre de 2012

LEY PERIODICA


La ley Periódica  es la bese de la tabla periódica de los elementos. Esta ley establece que las propiedades físicas y químicas de los elementos tienden a repetirse  sistemáticamente a medida que aumenta el numero  atómico. La tabla, es por lo tanto, un esquema que presenta a los elementos químicos según el orden creciente de  los números  atómicos.

La forma de la tabla periódica está íntimamente relacionada con la configuración electrónica de los átomos de los elementos. Por ejemplo, todos los elementos del grupo 1 tienen una configuración de [E] ns1 (donde [E] es la configuración del gas inerte correspondiente), y tienen una gran semejanza en sus propiedades químicas. La capa electrónica más externa se denomina "capa de valencia" y (en una primera aproximación) determina las propiedades químicas.

Conviene recordar que el hecho de que las propiedades químicas eran similares para los elementos de un grupo fue descubierto hace más de un siglo, antes incluso de aparecer la idea de configuración electrónica.


En la siguiente figura  se muestran algunas características generales de la tabla periódica de los elementos y se hace referencia a su nomenclatura.
 
Los renglones de la tabla periódica se llaman períodos, pues de su longitud depende la periodicidad con que se repiten las propiedades similares según la ley periódica. Debe notarse que los períodos tienen diferente longitud, así el primer período sólo contiene dos elementos (Hidrógeno y Helio), en tanto que el segundo período contiene 8 elementos y el cuarto 18. Adviértase además, que esta longitud está en relación directa con el número de electrones que caben en las diferentes capas de Bohr, y con el número de electrones que se pueden describir con un valor dado del número cuántico principal en el modelo de Schrödinger.
Los renglones de la tabla periódica se llaman períodos, pues de su longitud depende la periodicidad con que se repiten las propiedades similares según la ley periódica. Debe notarse que los períodos tienen diferente longitud, así el primer período sólo contiene dos elementos (Hidrógeno y Helio), en tanto que el segundo período contiene 8 elementos y el cuarto 18. Adviértase además, que esta longitud está en relación directa con el número de electrones que caben en las diferentes capas de Bohr, y con el número de electrones que se pueden describir con un valor dado del número cuántico principal en el modelo de Schrödinger.
Los períodos sexto y séptimo están "recortados" y los elementos cortados de ahí aparecen separados de la tabla en la parte inferior; esto se hace para no tener una tabla demasiado larga, aunque recientemente es común ver tablas que reincorporan a su período a estos elementos, algunos denominan a este tipo de tablas extra largas.
Las columnas de la tabla se conocen como grupos o familias y contienen como ya lo hemos dicho, a los elementos que tienen propiedades similares y, desde el punto de vista de la teoría, configuraciones electrónicas externas iguales.
Los elementos de la tabla periódica se pueden dividir en tres grandes conjuntos, a saber: elementos representativos que conforman las primeras dos columnas y las últimas seis de la tabla; metales de transición que constituyen diez columnas al centro de la tabla y metales de transición interna que comprenden las catorce columnas de la parte inferior de la tabla.
Los ocho grupos de elementos representativos tradicionalmente se han numerado con números romanos del I al VIII y con el subíndice a, la razón de esto es histórica, pues en la tabla corta los elementos representativos se mezclaban con los de transición, a los que se les asignaba el subíndice b.
Los dos primeros grupos de elementos representativos se conocen como bloque s (Figura 12), debido a que su configuración electrónica del estado fundamental termina en un orbital s. El primer grupo está conformado por una serie de elementos metálicos (a excepción del Hidrógeno) y se denomina grupo de los metales alcalinos. 
 El segundo grupo es el de los metales alcalinos térreos.
Los grupos representativos del III al VIII integran el bloque p, dado que su configuración electrónica más externa es de orbitales p. Algunos de estos grupos tienen un nombre distintivo, particularmente el grupo VII que se conoce como familia de los halógenos (de las palabras del griego que significan generador de sales) y el grupo VIII conocido como familia de los gases nobles. Un nombre de uso menos común es el del grupo seis al que algunos llaman de los calcógenos (de las palabras en griego que significan generador de minerales calcáreos).
Los metales de transición forman el bloque d, debido a que lo que los diferencia es el número de electrones en sus orbitales d externos. En el caso de los metales de transición interna esta distinción se da a través de los orbitales f, por lo que forman el bloque f. Algunos autores distinguen entre los dos renglones de transición interna llamándole al primero de los lantánidos o tierras raras y al segundo de los actínidos.
 Los elementos  con  número  atómico  mayor a 92, han sido preparados artificialmente y se les conoce como elementos transuránidos por encontrarse en la tabla periódica después del Uranio.

DISTRIBUCION ELECTRONICA


En Física y Química se utiliza una notación estándar para describir las configuraciones electrónicas de átomos y moléculas. Para los átomos, la notación contiene la definición de los orbitales atómicos (en la forma n l, por ejemplo 1s, 2p, 3d, 4f) indicando el número de electrones asignado a cada orbital (o al conjunto de orbitales de la misma subcapa) como un superíndice. Por ejemplo, el hidrógeno tiene un electrón en el orbital s de la primera capa, de ahí que su configuración electrónica se escriba 1s1. El litio tiene tres electrones en la subcapa 1s y uno en la subcapa 2s (de mayor energía), de ahí que su configuración electrónica se escriba 1s2 2s1 (pronunciándose "uno-ese-dos, dos-ese-uno"). Para el fósforo (número atómico 15), tenemos: 1s2 2s2 2p6 3s2 3p3

Es la distribución de los electrones en los subniveles y orbitales de un átomo. La configuración electrónica de los elementos se rige según el diagrama de Moeller:

Para comprender el diagrama de Moeller se utiliza la siguiente tabla:
Para encontrar la distribución electrónica se escriben las notaciones en forma diagonal desde arriba hacia abajo y de derecha a izquierda (seguir colores):

Este principio de construcción (denominado principio de Aufbau, del alemán Aufbau que significa 'construcción') fue una parte importante del concepto original de Bohr de configuración electrónica. Puede formularse como:
Sólo se pueden ocupar los orbitales con un máximo de dos electrones, en orden creciente de energía orbital: los orbitales de menor energía se llenan antes que los de mayor energía.
Así, vemos que se puede utilizar el orden de energías de los orbitales para describir la estructura electrónica de los átomos de los elementos. Un subnivel s se puede llenar con 1 ó 2 electrones. El subnivel p puede contener de 1 a 6 electrones; el subnivel d de 1 a 10 electrones y el subnivel f de 1 a 14 electrones. Ahora es posible describir la estructura electrónica de los átomos estableciendo el subnivel o distribución orbital de los electrones. Los electrones se colocan primero en los subniveles de menor energía y cuando estos están completamente ocupados, se usa el siguiente subnivel de energía superior. Esto puede representarse por la siguiente tabla:
Para encontrar la configuración electrónica se usa el mismo procedimiento anterior incluyendo esta vez el número máximo de electrones para cada orbital.   
Finalmente la configuración queda de la siguiente manera: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6
Pauli enuncia uno de los principio mas importantes en lo que a niveles de energía se refiere, este principio es conocido como principio de Exclusión de Pauli en el que se garantiza el hecho de que dos electrones no pueden tener los cuatro números cuánticos iguales.
 

PARTICULAS SUBATOMICAS


  • Las propiedades más interesantes de las 3 partículas constituyentes de la materia existente en el universo son:
  • Protón Se encuentra en el núcleo. Su masa es de 1,6×10-27 kg. Tiene carga positiva igual en magnitud a la carga del electrón. El número atómico de un elemento indica el número de protones que tiene en el núcleo. Por ejemplo el núcleo del átomo de hidrógeno contiene un único protón, por lo que su número atómico (Z) es 1.
  • Electrón Se encuentra en la corteza. Su masa aproximadamente es de 9,1×10-31 kg. Tiene carga eléctrica negativa
 Neutrón Se encuentra en el núcleo. Su masa es casi igual que la del protón. No posee carga eléctrica. De masa 1.838,4 veces mayor que la del electrón y 1,00137 veces la del protón
 

jueves, 9 de agosto de 2012

MODELOS ATOMICOS



SE LE COMUNICA A TODAS LAS SECCIONES QUE MAÑANA 25 DE AGOSTO DEL 2012 A LAS 8:30 AM LABORATORIO PARA LOS QUE NO PUDIERON ENTRAR AL LABORATORIO DE LAS PROPIEDADES FISICAS DE LA MATERIA, PORQUE NO ESTABAN MATRICULADOS Y LOS QUE TENGAN UNA EXCUSA MEDICA.




MODELOS ATOMICOS























MODELO ATOMICO DE JHON DALTON




El modelo atómico de Dalton, surgido en el contexto de la química, fue el primer modelo atómico con bases científicas, formulado en 1808 por John Dalton. El siguiente modelo fue el modelo atómico de Thomson Según Dalton los elementos estan formadas por particulas  extremadamente  pequeñas llamadas átomos, afirmando que todos los atomos de un mismo elemento son iguales, tiene igual tamaño, masa y propiedades químicas.

Dalton explicó su teoría formulando una serie de enunciados simples:

a)      La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.

b)      Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.

c)       Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.

d)      )Los átomos, al combinarse para formar compuestos guardan relaciones simples.

e)      Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.

f)       Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.

Éxitos del Modelo

  1. El modelo atómico de Dalton explicaba por qué las sustancias se combinaban químicamente entre sí sólo en ciertas proporciones.
  2. Además el modelo aclaraba que aún existiendo una gran variedad de sustancias, estas podían ser explicadas en términos de una cantidad más bien pequeña de constituyentes elementales o elementos.
  3. En esencia, el modelo explicaba la mayor parte de la química orgánica del siglo XIX, reduciendo una serie de hechos complejos a una teoría combinatoria.





MODELO ATOMICO DE JHOSEP THONSON


El modelo atómico de Thompson, es una teoria sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un pudin de pasas. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga negativa se postulaba con una nube de carga positiva.

Características del Modelo

Introduce la idea de que el átomo puede dividirse en las llamadas partículas fundamentales:

Electrones, con carga eléctrica negativa.

Protones, con carga eléctrica positiva.

Neutrones, sin carga eléctrica y con una masa mucho mayor que la de electrones y protones. Thomson considera al átomo como una gran esfera con carga eléctrica positiva, en la cual se distribuyen los electrones como pequeños granitos (de forma similar a las pepitas de una sandía).



 Las insuficiencias del modelo son las siguientes:

- El átomo no es macizo ni compacto como suponía Thompson, es prácticamente hueco y el núcleo es muy pequeño comparado con el tamaño del átomo, según demostró E. Rutherford en sus experiencias.

 MODELO ATOMICO DE RUTHERFORD


El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran distancia alrededor de un "núcleo", muy pequeño, que concentra toda la carga eléctrica positiva y casi toda la masa del átomo.

La importancia del modelo de Rutherford residió en proponer por primera vez la existencia de un núcleo en el átomo (término que, paradójicamente, no aparece en sus escritos). Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que sin ella, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya que implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:

Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.

Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería el caso de los electrones orbitando alrededor del núcleo, produciría radiación electromagnética, perdiendo energía y finalmente cayendo sobre el núcleo. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10 –10 s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo. Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. Los resultados de su experimento le permitieron calcular que el radio atómico era diez mil veces mayor que el núcleo mismo, y en consecuencia, que el interior de un átomo está prácticamente vacío.



























MODELO ATOMICO DE BOHR


El modelo atómico de Bohr o de Bohr-Rutherford es un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados (ver abajo). Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.

En 1913, Niels Bohr desarrolló su célebre modelo atómico de acuerdo a tres postulados fundamentales:

 Primer postulado

Los electrones describen órbitas circulares en torno al núcleo del átomo sin radiar energía.

Segundo postulado

Sólo son posibles aquellas órbitas en las que el electrón tiene un momento angular que es múltiplo entero de h/(2 · p). Puesto que el momento angular se define como L = mvr, tendremos:

mvr = n · h/(2 · p)    ->    r = a0 · n2     donde:

m: masa del electrón = 9.1 · 10-31 kg.

v: velocidad del electrón.

r: radio de la órbita que realiza el electrón alrededor del núcleo.

h: constante de Planck

n: número cuántico = 1, 2, 3...

a0: constante = 0,529 Å

Así, el Segundo Postulado nos indica que el electrón no puede estar a cualquier distancia del núcleo, sino que sólo hay unas pocas órbitas posibles, las cuales vienen definidas por los valores permitidos para un parámetro que se denomina número cuántico, n.

Tercer postulado

El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia de energía entre ambos niveles. Este fotón, según la ley de Planck tiene una energía:

Donde: ni identifica la órbita inicial y nf la final, y ν es la frecuencia.

Modelo Atómico de la Mecánica Cuántica: Ecuación de Schrödinger



Modelo de nube de electrones.

La ecuación de Schrödinger fue desarrollada por el físico austríaco Erwin Schrödinger en 1925. Describe la evolución temporal de una partícula masiva no relativista. Es de importancia central en la teoría de la mecánica cuántica, donde representa para las partículas microscópicas un papel análogo a la segunda ley de Newton en la mecánica clásica. Las partículas microscópicas incluyen a las partículas elementales, tales como electrones, así como sistemas de partículas, tales como núcleos atómicos.

La Mecánica Cuántica (1927) engloba la hipótesis de Louis de Broglie y el Principiode indeterminación de Heisenberg. El carácter ondulatorio del electrón se aplica definiendo una función de ondas, Ψ, utilizando una ecuación de ondas, que matemáticamente es una ecuación diferencial de segundo grado, es decir, una ecuación en la cual intervienen derivadas segundas de la función Ψ.














       

  Al resolver la ecuación diferencial, se obtiene que la función Ψ depende de una serie de parámetros, que se corresponden con los números cuánticos, tal y como se han definido en el modelo de Böhr. La ecuación sólo se cumplirá cuando esos parámetros tomen determinados valores permitidos (los mismos valores que se han indicado antes para el modelo de Böhr).






El cuadrado de la función de ondas, Ψ2, corresponde a la probabilidad de encontrar al electrón en una región determinada, con lo cual se está introduciendo en el modelo el Principio de Heisenberg. Por ello, en este modelo aparece el concepto de orbital: región del espacio en la que hay una máxima probabilidad de encontrar al electrón.

(No debe confundirse el concepto de orbital con el de órbita, que corresponde al modelo de Bohr: una órbita es una trayectoria perfectamente definida que sigue el electrón, y por tanto es un concepto muy alejado de la mecánica probabilística.)

Números cuánticos.

 En este modelo atómico, se utilizan los mismos números cuánticos que en el modelo de Bohr y con los mismos valores permitidos, pero cambia su significado físico, puesto que ahora hay que utilizar el concepto de orbital.

 Número Cuántico Principal (n)

Significado Físico:

 Energía total del electrón (nivel energético en que se encuentra el electrón).
 Distancia del electrón al núcleo.

    Valores Permitidos:    1, 2, 3....

Número Cuántico Secundario o Azimutal (l)

 Significado Físico:

 Subnivel energético en donde está el electrón, dentro del nivel determinado por n.
   Valores Permitidos:

        0, 1, 2, ..., n-1

Números Cuántico Magnético (ml )

    Significado Físico:

 Orientación del orbital cuando se aplica un campo magnético externo.
    Valores Permitidos:

     -l, ..., 0, ..., + l

    Estos tres números cuánticos  anteriores determinan al orbital.






Orbital S: n = 1  l = 0  ml= 0






Orbital P: n = 2  l = 1  ml= -1,0,1











Además existe un cuarto número cuántico, llamado Spin del Electrón:

Espín (s)

 Significado Físico:

 Sentido de giro del electrón en torno a su propio eje.    Valores Permitidos: ± 1/2

Así, cada conjunto de  cuatro números cuánticos caracteriza a un electrón:

 Esto se refleja en el Principio de exclusión de Pauli (1925): en un átomo no puede haber dos electrones que tengan los cuatro números cuánticos iguales, al menos se tendrán que diferenciar en uno de ellos.

Este modelo es válido para explicar la configuración electrónica de los átomos. Por la configuración electrónica se deducen las propiedades de los átomos, y en base a las propiedades de los átomos se explican los enlaces que originan las distintas sustancias químicas

Veamos los orbitales posibles según el valor de los números cuánticos:

Si n = 1 entonces el número cuantico l sólo puede tomar el valor 0 es decir sólo es posible encontrar un orbital en el primer nivel energético en el que puede haber hasta dos electrones (uno con spin +1/2 y otro con spin -1/2). Este orbital, de apariencia esférica, recibe el nombre de 1s:




Si n = 2 , el número l puede tomar los valores 0 y 1, es decir son posibles los tipos de orbitales s y p. En el caso de que sea l = 0, tenemos el orbital llamado 2s en el que caben dos electrones (uno con spin +1/2 y otro con spin –1/2):


Si l = 1 tendremos orbitales del tipo p de los que habrá tres diferentes según indicarían los tres valores (+1, 0, -1) posibles del número cuántico m, pudiendo albergar un máximo de dos electrones cada uno, con valores de spin +1/2 y -1/2, es decir seis electrones como máximo:


Si n = 3 son posibles tres valores del número cuántico l: 0,1 y 2. Si l = 0 tendremos de nuevo un orbital del tipo s:




















Si  l = 1 tendremos los tres orbitales del tipo p:




Y   si l = 2 los orbitales serán del tipo d, de los que habrá cinco diferentes según indican los cinco valores posibles (+2, +1, 0, -1, -2) para el número cuántico m y que podrán albergar un total de diez electrones: